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Abstract Fractal theory has been proved effective to

characterize the complex pore structure. In this article, the

fractal method is utilized to study the structure property of

fibrous assemblies. The box dimension parameter is

applied to characterize the pore structure of fibrous

assemblies by analyzing the electronic scanning micro-

scope images of the fibrous assemblies. Furthermore, a

fractal model for predicting effective heat conductivity is

established. Experiment is conducted to verify the model,

and good agreement is found between the experimental and

theoretical results. The fractal model is also compared with

the previous models for predicating heat conductivity, and

the former is proved to be more accurate.

Keywords Heat transfer � Fibrous assembly �
Fractal method

Introduction

The effective heat conductivities of fibrous assemblies have

received continuous attention [1–7] due to their various

applications in clothing and engineering. The property,

reported in several literatures, depends on the nature of pore

size and distribution in a fibrous assembly [8–10]. There-

fore, describing the pore structure properties of fibrous

assemblies is of great importance. Several researches have

discovered the fractal features of porous media [11–14]. As

is known, the fibrous assembly is a kind of porous media,

consisting of fibers and air, and the fractal method is also

feasible to investigate the pore structure of fibrous assem-

blies, which is found in a few papers [15–17]. In this article,

we will also utilize the fractal method to study the pore

nature of fibrous assemblies investigated here.

Numerous researchers have worked on the analytical

calculation of the heat conductivity of fibrous assemblies

[18–29]. Schuhmeister [18] was the first to develop a

model for heat conductivity of fibrous structures that

combines a parallel and series mode of heat transfer

through the air and fiber phase. The model was utilized by

many researchers for heat transfer study [1, 19]. In order to

model the solid heat conduction through fibers and contact

points, Hager and Steere [20] developed an empirical for-

mula for calculating heat conductivity by combination of

solid conduction with a series of thermal network for gas/

solid conduction. Woo et al. [4] presented a more com-

plicated heat transfer model of fibrous assemblies by con-

sidering fiber orientation and anisotropy, and the model is

proved to be more accurate. However, the model contains

so many parameters, which are complex to get. In the

above models, heat transfer by radiation is not considered

which are proved to take a large proportion in fibrous

assemblies with high porosity or under high temperature

[21–24]. Farnworth developed the two-flux model for

studying heat transfer property of fibrous assemblies [25],

and the model is widely used by later researchers for cal-

culating combined heat and mass transfer properties [26,

27]. Veiseh et al. [28] proposed an empirical formula for

fibrous assemblies by combining Langlais and Klarsfeld

semi-empirical relation for conduction heat transfer and

Larkin formula for radiation part, and the model is verified

by fitting amount of experimental data. The above
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approaches, called ‘‘average volume’’ methods, are all

based on the assumption that the fibrous assemblies are

continuous medium, which makes it difficult to consider

the influence of microstructures of pores, and thus the

application of these existing porous media theories has

some fundamental limitations.

Fractal theory has been applied to study permeability

[11, 29, 30] and thermal conductivity of porous media

[13, 31, 32]. Chen et al. [31] developed a fractal model

to study effective heat conductivity of soil. Later, Yu

et al. [32] proposed fractal models to calculate the

effective thermal conductivity of mono- and bi-dispersed

porous media, such as sandstone, particles, etc. The

effective heat conductivity of wood [33], foam [34], and

other objects were also discussed by some researchers

[35, 36]. The above models established were based on the

assumption that the objects investigated are exactly self-

similar, which is not in accordance with real porous

media. For real porous media, the microstructure such as

pore sizes and particles are statistically self-similar. Kou

et al. [37] investigated the effective heat conductivity of

fibrous materials under this condition. The model

assumed that the air and fibers are in parallel arrangement

in the fibrous materials, which neglects the fiber-to-fiber

contact effect on effective heat conductivity. The previ-

ous models also did not take radiative heat conductivity

into consideration.

In this article, we will use fractal theory to study the

structure of fibrous assemblies. A more complete fractal

model for predicating effective heat conductivity of fibrous

assemblies is established. Fiber-to-fiber contact influence

to the effective heat conductivity was considered. Radia-

tive heat conductivity was also taken into consideration.

Experiment is conducted to verify the model. Parameter

influence on effective heat conductivity is systematically

discussed.

Experimental

Materials and testing device

A variety of nonwoven fabrics, one form of fibrous

assembly, were selected for the samples. The specifications

of these samples are listed in Table 1. The thickness was

measured in accordance with ISO 5084-1996. The pressing

pressure is 100 cN and the pressing time is 10 s. The area

density was calculated by measuring the weight of a

sample with the diameter of 10 cm using an electronical

balance with the precision of 0.00001 g. The porosity of

the samples is calculated by the following equation:

e ¼ 1� l
1000L0qf

; ð1Þ

where l is the area density, L0 is the thickness, and qf is the

fiber density.

The effective heat conductivity was measured by the

Kawabata Thermolabo, which is in accordance to the Chinese

National Standard GB11048-89. The temperature difference

(DT) between the two sides of a sample is fixed during the

testing and is set to be 10 �C here. The pressure applied to the

sample is controlled to be 6 g/cm2 here. According to Fourier

law, when heat flux through materials (q) is stabilized, the

heat conductivity kexp can be expressed as:

kexp ¼
qL0

ADT
: ð2Þ

Theory

Microstructure and fractal description of fibrous

assemblies

As is known, an object measurement is related to its

dimension and is invariant with the unit of measurement

used. In general, ordered objects such as points, lines,

Table 1 Parameters of the nonwoven fabrics chosen

Sample

number

Fiber

type

Fiber diameter,

df/lm

Fiber

emissivity, e
Fiber density,

qf/g/cm3
Fiber heat

conductivity, ks/w/m/k

Thickness,

L0/mm

Area density,

l/g/m2
Porosity, e

1 PET-100% 10.6 0.8 1.38 0.14 0.449 34 0.945

2 PET/VS-30/70 10 0.8 1.478 0.092 0.49 42.46 0.941

3 PET/VS-70/30 11.5 0.8 1.422 0.116 0.633 65.7 0.927

4 PET/VS-70/30 11.5 0.8 1.422 0.116 0.817 84.5 0.927

5 PP 21 0.97 0.91 0.12 0.317 44.5 0.845

6 PP 21 0.97 0.91 0.12 0.464 67.4 0.840

7 PP 21 0.97 0.91 0.12 0.63 101.3 0.809

8 PET/VS-20/80 15.5 0.8 1.49 0.086 0.615 141 0.846

9 Basalt 9 0.7 2.8 0.034 3.25 581 0.936
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surfaces, and cubes can be described by Euclidean geom-

etry using integer dimension 0, 1, 2, and 3, respectively.

However, it is found that numerous objects in nature, such

as rough surfaces, coastlines, mountains, rivers, lakes, and

islands, are disordered and irregular, and they cannot be

described by the Euclidean geometry because of the scale-

dependent measures of length, area, and volume. These

objects are called fractals, and the dimensions of such

objects are non-integral and defined as fractal dimensions.

A fractal object measurement M(L) is related to the length

scale L by the following power form [38].

MðLÞ� LDf ; ð3Þ

where the ‘‘*’’ should be read as ‘‘scale as,’’ M can be the

length of a line, the area of a surface, the volume of a cube,

or the mass of an object, Df is the fractal dimension of the

object, 0 \ Df \ 2 in two dimensions. For real porous

media, the size distribution of pores satisfies the fractal

power law [29, 30],

NðL� pÞ ¼ pmax

p

� �Df

; ð4Þ

where p, and pmax are the pore size, and maximum pore

size, separately.

The number of pores within the infinitesimal range p to

p ? dp by differentiating Eq. 4 with respect to p.

�dN ¼ Dfp
Df

maxp�ð1þDfÞdp: ð5Þ

The total number of pores (Nt) can be obtained from

Eq. 2 in diameter range from pmin to pmax:

NtðL� pminÞ ¼
pmax

pmin

� �Df

: ð6Þ

Dividing Eq. 6 by Eq. 5, Eq. 7 is obtained:

�dN

N
¼ Dfp

Df

minp�ð1þDfÞdp ¼ f ðpÞdp: ð7Þ

In the above equation, f(p) is the probability density

function and should satisfy the following relationship (5).

Z1

0

f ðpÞdp ¼
Zpmax

p
min

f ðpÞdp¼ 1� pmin

pmax

� �Df

� 1: ð8Þ

It is obviously seen that Eq. 8 holds if Eq. 9 is satisfied.

pmin

pmax

ffi 0: ð9Þ

That is to say pmin � pmax in Eq. 9 must be satisfied for

fractal analysis of porous media. In general, pmin/

pmax B 10-2 in porous media, so the fractal theory can

be used to study the characters of porous media.

It is considered that a unit cell in the fibrous assemblies

includes a bundle of tortuous capillary tubes with variable

cross-sectional area. Let the diameter of a capillary in the

fibrous assembly be p and its tortuous length along the flow

direction be L(p). Due to the tortuous nature of the capil-

lary, L(p) C L0, with L0 being the representative length.

The equation, L(p) = L0, holds for a straight capillary.

When heat flow through the pores of the fibrous assem-

blies, the capillaries may be tortuous. These tortuous cap-

illaries can be described by fractal equation [30]:

LðpÞ
L0

¼ L0

p

� �Dt�1

; ð10Þ

where Dt is the tortuosity fractal dimension, in the range of

1 B Dt B 2, which represents the extent of convolutedness

of capillary pathways for heat flow through a medium. The

higher the value Dt, the higher tortuous capillary. For a

straight capillary path, Dt = 1, and the limiting case of

Dt = 2 corresponds to a highly tortuous line that fills a

plane.

The fractal model for effective heat conductivity

Heat transfer through a fibrous material involves combined

modes of heat transfer: solid conduction through fibers, air

conduction and natural convection in the space between

fibers, and radiation interchange through participating

media. Natural convection heat transfer in fibrous materials

with densities greater than 20 kg/m3 is negligible [39].

According to Stark and Fricke [40], the total heat flux (qsa)

passing through a fibrous material is:

qtotal ¼ qsa þ qr; ð11Þ

where qsa is the heat flux by solid fibers and air, and qr is

the heat flux due to radiation.

Using Fourier’s law q = -k grad T, the total effective

heat conductivity:

keff ¼ ksa þ kr: ð12Þ

Therefore, derivation of the effective heat conductivity

can be divided into two parts, which are the derivation of

solid and air heat conductivity, and the derivation of

radiative heat conductivity, respectively.

Heat conductivity by solid and air (ksa)

In general, numerous capillary channels both parallel (Part

A) and perpendicular (Part B) to heat flow direction for real

fibrous assemblies, shown in Fig. 1, so the heat conduc-

tivity by solid and air can be divided into two parts, which

are parallel and perpendicular heat conductivities kpar and

kper. The total heat conductivity by solid and air can be

expressed as:

ksa ¼ dkper þ ð1� dÞkpar; ð13Þ
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where d is the ratio of the number of perpendicular channels to

the total number of channels, with values ranging from 0 to 1.

Fractal parallel model kpar

By heat-electric analogy approach, the parallel heat con-

ductivity can be calculated by assuming that fibers and air

channels are in parallel arrangement to heat flow.

According to the Fourier’s law, the thermal resistance of

a single channel r can be expressed as [41, 42]:

rðpÞ ¼ LðpÞ
Ak

; ð14Þ

where k is heat conductivity. The thermal resistance of a

single air channel can be expressed as:

raðpÞ ¼
LðpÞ
Aaka

¼ 4LðpÞ
pp2ka

: ð15Þ

The heat resistance of the air channels with the diameter

between p and p ? dp can be written as:

R�dNðpÞ ¼
raðpÞ
�dN

¼ 4LðpÞ
pp2kaDfp

Df
maxp�ðDfþ1Þdp

: ð16Þ

Substituting Eq. 10 into Eq. 16, we can get Eq. 17.

R�dNðpÞ ¼
raðpÞ
�dN

¼ 4LDt

0

pp2kaDfp
Df
maxpDt�Df dp

: ð17Þ

According to heat-electrical analogy principle, the total

heat resistance of air phase can be described as:

RaðpÞ ¼
1Ppmax

pmin

1
R�dN ðpÞ

¼ 4LDt

0Ppmax

pmin
pkaDfp

Df
maxpDt�Df dp

¼ 4LDt

0R pmax

pmin
pkaDfp

Df
maxpDt�Df dp

¼ 4LDt

0 ðDt � Df þ 1Þ

pkaDfp
Dtþ1
max 1� pmin

pmax

� �Dt�Dfþ1
� � : ð18Þ

The heat transfer resistance caused by fibers can be

written as:

Rs ¼
L0

ð1� eÞAks

: ð19Þ

Theoretical modeling of solid conduction through fibers

and points of contact between them is difficult, and various

empirical relations have been developed to model the solid

conduction. Model of Verschoor et al. [43] is used here,

shown in Eq. 20,

ks ¼ ð1� eÞmk	s ; ð20Þ

where m is the constant determined by comparing the

experimental and theoretical results and ks
* is the heat

conductivity.

Therefore, the total parallel heat conductivity can be

expressed as:

kpar ¼
L0

A

1

Ra

þ 1

Rs

� �

¼
pDfp

Dtþ1
max ½1� ð

pmin

pmax
ÞDt�Dfþ1


4AðDt � Df þ 1ÞLDt�1
0

ka þ ð1� eÞks; ð21Þ

where A is the surface area and can be expressed as:

A ¼ Ap

e
¼ � 1

e

Zpmax

pmin

1

4
pp2dN

¼ 1

e

Zpmax

pmin

1

4
pp2Dfp

Df

maxp�ð1þDfÞdp

¼ pDfp
2
max

4ð2� DfÞe
1� pmin

pmax

� �2�Df

" #
: ð22Þ

Therefore, the total parallel heat conductivity can be

obtained:

kpar ¼
L0

A

1

Ra

þ 1

Rs

� �

¼
ð2� DfÞe 1� pmin

pmax

� �Dt�Dfþ1
� �

ðDt � Df þ 1Þ 1� pmin

pmax

� �2�Df

� � pmax

L0

� �Dt�1

ka þ ð1

� eÞks:

ð23Þ

Fractal perpendicular model

The perpendicular heat conductivity can be calculated by

assuming that fibers and air channels are in perpendicular

arrangement to heat flow. The perpendicular heat conduc-

tivity can be written as:

kper ¼
1

e
ka
þ 1�e

ks

: ð24Þ

Inserting Eqs. 23 and 24 into Eq. 13, we can get:

Q1
Q2

A

B

Fig. 1 Schematic diagram of fractal channel in fibrous material
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ksa ¼ ð1� dÞ

�

(
ð2� DfÞe 1� pmin

pmax

� �Dt�Dfþ1
� �

ðDt � Df þ 1Þ 1� pmin

pmax

� �2�Df

� � pmax

L0

� �Dt�1

ka

þ ð1� eÞks

)
þ d

1
e
ka
þ 1�e

ks

: ð25Þ

Radiative heat conductivity kr

The radiative heat conductivity can be obtained from the

following equation, according to the studies by previous

researchers [44–46].

kr ¼ CrT3 R0

eð1� eÞ ; ð26Þ

where R0 is the radius of fiber, e is the emissivity of the

fiber, r is the Boltzmann constant, T is the temperature, and

C is the constant determined by fiber orientation.

In the previous study, we got the new constant by

comparing theoretical model and experiment results, which

is more accurate [46].

kr ¼ 3:315rT3 R0

eð1� eÞ : ð27Þ

The effective heat conductivity

The total effective heat conductivity can be obtained by

substituting Eqs. 26 and 27 into Eq. 11.

keff ¼ ð1� dÞ

�

(
ð2� DfÞe 1� pmin

pmax

� �Dt�Dfþ1
� �

ðDt � Df þ 1Þ 1� pmin

pmax

� �2�Df

� � pmax

L0

� �Dt�1

ka

þ ð1� eÞks

)
þ d

1
e
ka
þ 1�e

ks

þ 3:315rT3 R0

eð1� eÞ :

ð28Þ

There is no empirical parameter and every parameter

has a clear physical meaning. Several parameters have to

be determined in this equation, the pore area fraction Df,

the tortuosity fractal dimension Dt, the maximum pore size

pmax, and the minimum pore size. The parameters were

discussed in the following part.

Parameter determination

Pore area fractal dimension Df

The pore area fractal dimension Df is a parameter for

characterizing the complex structure of porous media. It

Import the SEM image to the Matlab software 

Preprocess the image, including image filtration, image 

strengthening, and image transformed to be binary.  

Extract pixel information to form a square 

matrix, and calculate the width of the matrix w.  

Select the partition size c. 

c = 2 

i = 1 

i < lnw/lnc

Separate the matrix into (ci–1)2 subsidiary matrix and 

calculate the number of the zero matrixes n(c). 

Add the box sizes and numbers to the array C, 

N(c): )()(),/1ln( 1 cncNcC i =−= −

i = i + 1 

Make a linear fit between C and N(c): abCN += . If the 

correlation coefficient (r) is large enough, the slope (b) is the fractal 

dimension. The fractal dimension is noted as Df.

Export the fractal dimension (Df) and correlation coefficient (r). 

No

Yes 

Fig. 2 Flow chart of determination pore area fractal dimension
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can be obtained based on the box-counting method [13,

30]. This method is on the basis of the image analysis of a

unit cell. The flow chart is shown in Fig. 2. The image

processing analysis to the influence of the fractal dimen-

sion was investigated systematically by Tang et al. [16].

Image magnification was discovered to have little effect on

the fractal dimension; on the contrary, threshold value is

regarded to have obvious affect on the fractal dimension.

Iteration method [47] was applied to get the best threshold

value here. In the calculating step, the surface section under

consideration is covered using square boxes of size (c, then

the number of boxes (N(c)), required to completely cover

the pore areas is counted. The pore area fractal dimension

(Df) can be determined by the value of the slope of a linear

fit through data on a logarithmic plot of the cumulative

number of pores N(c) versus the pore size c.

Tortuosity fractal dimension

The determination of tortuosity fractal dimension can be

classified into two categories. One is the box-counting

method, which was proved successful in [14, 48]. The other

is the analytical method, and several researchers have

applied the method [49, 50]. Since it is complicated to get

the cross-sectional area, parallel to the air flow, of the

fibrous assemblies, the second method is applied.

As a matter of fact, Eq. 10 can be rewritten as:

s ¼ LðpÞ
L0

¼ L0

p

� �Dt�1

: ð29Þ

The average tortuosity (sm) can be determined by

substituting the average pore diameter (pm) into Eq. 29.

Dt ¼ 1þ ln sm

ln L0

pm

: ð30Þ

Then, the fractal dimension, Dt, for tortuous flow

streamtubes in porous media can be obtained from

Eq. 30 as:

sm ¼
L0

pm

� �Dt�1

: ð31Þ

In the above equation, the average pore diameter pm can

be determined by Eq. 32.

pm ¼
Zpmax

pmin

pf ðpÞdp ¼
Zpmax

pmin

pDfp
Df

minp�ð1þDfÞdp

¼ Df

Df � 1
pmin 1� pmin

pmax

� �Df�1
" #

: ð32Þ

The tortuosity of fibrous materials was studied by some

researchers [51–53]. The tortuosity model of fibrous

assemblies developed by Koponen [52] is selected for

calculation here, as it was proved to be more accurate.

s ¼ 1þ 0:65
ð1� eÞ

ðe� 0:33Þ0:19
: ð33Þ

Accordingly, the tortuosity fractal dimension can be

derived by substituting Eqs. 32 and 33 into Eq. 30.

Dt ¼ 1þ ln sm

ln L0

pm

¼ 1þ
ln 1þ 0:65

ð1�eÞ
ðe�0:33Þ0:19

h i

ln
L0ðDf�1Þ

Dfpmin 1� pmin
pmax
ð ÞDf�1

� 	 : ð34Þ

pmax, pmin determination

The biggest pore size pmax in fibrous assemblies has been

discussed in series of papers [54, 55]. The expression can

be expressed as:

pmax ¼
2:549

x
; ð35Þ

where

x ¼ 8l
pL0dfqf

;

where x is the total length of fibers per unit area, df is the

fiber diameter, l is the mass per unit area, and qf is the

density of fiber.

The minimum pore size pmin in fibrous assemblies has

not been found in previous studies, and it is assumed to be

expressed in Eq. 31.

pmin ¼
h
x
; ð36Þ

where h is the constant determined by comparing the

experimental and theoretical results.

Results and discussion

Parameters determination in the fractal model

Firstly, parameters in the fractal model have to be deter-

mined. Figure 3 exhibits the image of the nonwoven fabric

5, as an example, before and after processing. The image is

with the magnification of 100, resolution of 254 DPI, and

size of 1280 pixel 9 960 pixel.

Figure 4 shows the logarithmic plots of the cumulative

number of macro-pores versus pore sizes of the nonwoven

fabric. It is obvious that the number of cumulative pores

increases with the increase of the pore size. The data follow

a linear relationship on the logarithmic scale, which con-

firms the statistical fractal nature of the microstructures of

the nonwoven fabrics. The fractal dimension can be

derived from the slopes of these straight lines.
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The pore area fractal dimension Df is calculated based on

the images, and the maximum pore diameter pmax is derived

by Eq. 36, listed in Table 2. The tortuosity fractal dimen-

sion Dt and the minimum pore diameter pmin are not shown

in the table, as the two parameters are related to each other,

which will be determined by comparing the experimental

and fractal model predicting results of heat conductivity.

The effective heat conductivity determination

by experiment

The experimental result is shown in Fig. 5. It can be seen

from the figure that the effective heat conductivity

decreases with the increase of porosity except the last two

points. The testing temperature is 25 �C, and radiative heat

conductivity is neglected. Heat conductivity by fibers and

air is the main factor affecting the final effective heat

conductivity. Sample 11 shows the lowest effective heat

conductivity because of its super low fiber heat conduc-

tivity 0.034 W/m K. Samples 1 and 2 exhibit higher

effective heat conductivity than sample 11 because of their

higher fiber heat conductivity.

Comparison between fractal model and analysis models

Several representative analytical models developed by

previous researchers are listed in Table 3. The fractal

model is compared with the models.

Figure 6 shows the effective heat conductivities derived

by the models and experiment. From the figure, it is found

that the effective heat conductivities obtained by the

(a) (b)

Fig. 3 SEM images of the

nonwoven samples. a The SEM

images before processing, b the

binary images

N = 1.9196C

R2 = 0.998

0

2

4

6

8

10

12

0 2 4 6

C  (log(1/(c i –1
)))

N
 (

lo
g(

n
))

Fig. 4 The logarithmic plots of the cumulative number of pores

versus pore sizes

Table 2 Parameters determined indirectly

Sample

number

Pore area fractal

dimension, Df

The maximum pore

diameter, pmax/lm

1. 1.9333 193.7

2. 1.9244 182.1

3. 1.9190 161.9

4. 1.9170 161.7

5. 1.9303 163.3

6. 1.9412 144.7

7. 1.9196 118.9

8. 1.9077 110.3

9. 1.8843 151.4

0.0258

0.0298

0.0338

0.0378

0.0418

0.8 0.83 0.86 0.89 0.92 0.95

Porosity ε

T
he

 e
ff

ec
tiv

e 
he

at
 c

on
du

ct
iv

ity
 k

/w
m

–1
k–1

 

Fig. 5 The effective heat conductivity versus porosity by experiment
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models of Farnworth, Hager and Steetre, and fractal model

here shows the same trend with the experimental result.

However, the model of Veiseh is the exception, indi-

cating that the model is not validated. It is obvious to see

that the effective heat conductivities obtained by the fractal

model and experiment are in better accordance, showing

the accuracy of the fractal model. The parameter m (indi-

cating the effect of fiber-to-fiber contact to solid fiber

conductivity) was calculated to be 0.05, which is similar to

the result of Liu (0.058) [56]. h was calculated to be 0.1

(the constant in the equation of the minimum pore diameter

calculation). Using the result of h, the minimum pore

diameters of samples 2, 4, and 11 are calculated to be 7.5,

8.4, and 5.5 lm, respectively, very close to the results of

the experiment done by Yang [57], which are 7.37, 8.27,

and 5.32 lm.

Conclusions

In this article, fibrous materials were confirmed to have the

fractal property by box-counting method.

A fractal model was developed for studying the effective

heat conductivity of nonwoven fabrics. The fractal model

indicates that the effective heat conductivity is related to

the parameters, including the biggest and smallest pore

diameter, the solid conductivity, the air conductivity,

porosity, and temperature.

The theoretical results are compared with the experi-

mental results and the previous formulas, from which the

fractal model is confirmed, consequently, the parameter m,

contained in the fiber-to-fiber contact influence on the

effective heat conductivity equation, is confirmed to be

0.05 and the parameter h, the coefficient in the minimum

pore diameter equation, is determined to be 0.1.
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